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Magnetoviscosity and relaxation in ferrofluids

B. U. Felderhof
Institut für Theoretische Physik A, RWTH Aachen, Templergraben 55, 52056 Aachen, Germany

~Received 17 April 2000!

The increase in viscosity of a ferrofluid due to an applied magnetic field is discussed on the basis of a
phenomenological relaxation equation for the magnetization. The relaxation equation was derived earlier from
irreversible thermodynamics, and differs from that postulated by Shliomis. The two relaxation equations lead
to a different dependence of viscosity on magnetic field, unless the relaxation rates are related in a specific
field-dependent way. Both planar Couette flow and Poiseuille pipe flow in parallel and perpendicular magnetic
field are discussed. The entropy production for these situations is calculated and related to the
magnetoviscosity.

PACS number~s!: 47.65.1a, 83.80.Gv, 83.50.Pk, 76.90.1d
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I. INTRODUCTION

The flow of a ferrofluid can be manipulated by applicati
of a magnetic field. A locally nonuniform field leads to
force density acting on the fluid. Besides the usual viscos
two dissipative processes govern the dynamics, namely
tational friction of ferromagnetic particles against the s
pending fluid, and magnetic relaxation@1,2#. For sufficiently
large particles magnetic relaxation is due to orientatio
Brownian motion of the permanent magnetic dipoles. Fo
dilute ferrofluid in weak magnetic field this leads to a simp
relation between the two transport coefficients. For de
ferrofluids the transport coefficients are modified by hyd
dynamic, magnetic, and other interactions between partic
and are not easily calculated. For such systems one is fo
to take a more phenomenological point of view.

Recently we have studied the irreversible thermodyna
ics of ferrofluids on the basis of hydrodynamics and the
set of Maxwell equations@3#. The analysis led to an expres
sion for the entropy production and phenomenological rel
ation equations for internal rotation and magnetization. T
relaxation equation for magnetization is closely related,
not identical to the equation postulated earlier by Shliom
@4#. In the following we explore the consequences for t
dependence of viscosity on magnetic field, and comp
them with the predictions made on the basis of Shliom
relaxation equation@2,4,5#.

We consider both planar Couette flow and Poiseuille p
flow in parallel and perpendicular magnetic fields. For Co
ette flow the magnetoviscosity is calculated from the m
netic stress tensor. For Poiseuille flow it follows from t
flow pattern for given applied pressure gradient. We sh
that in both cases the magnetoviscosity can be calcul
alternatively from the entropy production.

The magnetoviscosity shows a dependence on magn
field which agrees with that calculated from Shliomis’ rela
ation equation only if the ratio of relaxation rates for the tw
equations depends on magnetic field in specific fashion,
termined by the equilibrium equation of state. We comp
predictions following from the assumption that the two ra
do not depend on magnetic field.

The analysis suggests that relaxation of magnetization
ferrofluid should be analyzed critically on the basis of e
PRE 621063-651X/2000/62~3!/3848~7!/$15.00
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periment and computer simulation. Both the dependenc
magnetoviscosity on magnetic field and the relaxation
magnetization after the field is turned off are of intere
Theoretical analysis of dense ferrofluids in the framework
nonequilibrium statistical mechanics is difficult, but in prin
ciple can be based on the generalized Smoluchowski e
tion for Brownian motion@6#.

II. RELAXATION EQUATIONS

We study steady state flow situations of a ferrofluid d
placed slightly from thermal equilibrium due to an impos
shear flow. In thermal equilibrium the fluid is at rest ever
where. The local magnetizationMeq(r ) and the local mag-
netic field Heq(r ) are then related by the equilibrium equ
tion of state, which we write in the form

Meq5HeqA~Heq!, ~2.1!

whereA(H) is a known function of magnetic field. For nu
merical purposes we shall use the expression

A~H !5
Ms

H
LS 3x0H

Ms
D ~2.2!

with the Langevin functionL(j)5cothj2j21. The satura-
tion magnetizationMs and the initial susceptibilityx0 enter
as parameters. For a dilute ferrofluidMs5nm and x0
5nm2/(3kBT), wheren is the number density of Brownian
particles,m is the size of the magnetic moment of a partic
andT is the temperature. We shall also use Eq.~2.1! in the
inverted form

Heq5MeqC~Meq!. ~2.3!

In a nonequilibrium situation the magnetization will ten
to relax to the equilibrium value corresponding to the loc
value of the magnetic field. Shliomis@4# has postulated the
relaxation equation

dM

dt
2v3M52gM„M2M0~H!…, ~2.4!
3848 ©2000 The American Physical Society
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PRE 62 3849MAGNETOVISCOSITY AND RELAXATION IN FERROFLUIDS
whered/dt5]/]t1v•¹ is the substantial derivative for flow
velocity v, and v is the mean rate of rotation of the su
pended particles. FurthermoreM0(H)5HA0(H) depends on
the local value of the magnetic field according to Eq.~2.1!
with the Langevin expression Eq.~2.2! for a dilute ferrofluid.
Martsenyuk, Raikher, and Shliomis@7# have justified Eq.
~2.4! for a dilute suspension on the basis of Brownian mot
theory. The relaxation rategM is composed of both Brown
ian relaxation and Ne´el relaxation@7#. For sufficiently large
Brownian particles Ne´el relaxation may be neglected. A
approximate calculation@7# for a dilute ferrofluid on the ba-
sis of Brownian motion theory shows that the rate coeffici
gM depends on the field, and increases in proportion toH for
large field.

We have shown@3# that irreversible thermodynamics i
combination with Maxwell’s equations leads to the rela
ation equation

dM

dt
2v3M1M¹•v5gH„B2Bl~M !…, ~2.5!

whereB is the magnetic induction given by

B5H14pM ~2.6!

in Gaussian units, and the fieldBl(M ) is

Bl~M !5H l~M !14pM , ~2.7!

with H l(M )5MC(M ) expressed in terms of the local ma
netization by Eq.~2.3!. The third term on the left of Eq.~2.5!
accounts for compressibility of the ferrofluid, usually a qu
small effect. Subtracting Eqs.~2.6! and ~2.7! we can write
Eq. ~2.5! in the alternative form

dM

dt
2v3M1M¹•v5gH„H2H l~M !…. ~2.8!

Shliomis’ relaxation equation, Eq.~2.4!, is linear inM and is
intended to hold for small deviations from local equilibrium
Let M l(H)5HA(H) be the magnetization corresponding
local equilibrium in the fieldH. To first order in the devia-
tion ml5M2M l we have

H2H l~M !52mlC~Ml !2
ml•M l

M l
M lC8~Ml !1O~ml

2!.

~2.9!

Thus Eqs.~2.4! and ~2.8! agree for small deviations from
equilibrium, apart from the compressibility term and t
more general equation of state in Eq.~2.8!, provided the
relaxation ratesgM andgH are related by

gM5gHC~Ml !, ~2.10!

and provided the deviationml is perpendicular to the direc
tion of the local fieldH.

The relaxation equation Eq.~2.8! also describes relaxatio
of large deviations from equilibrium. For simplicity we sha
assumegH to be a scalar. According to irreversible therm
dynamics it is a positive function ofM andH. Microscopic
theory is required for a more precise determination of
transport coefficient. With free energy density
n

t

-

e

w~M !5w01E
0

M

M 8C~M 8!dM8 ~2.11!

we have the thermodynamic force

H2H l~M !5
]

]M
@M•H2w~M !#, ~2.12!

which suggests thatgH does not depend strongly onM and
H.

The mean rotation ratev in Eqs.~2.4! and ~2.8! satisfies
the relaxation equation@1,2#

rI
dv

dt
52z~¹3v22v!1M3H, ~2.13!

whereI is the moment of inertia per unit mass andz is the
vortex viscosity. Typically the relaxation timerI /z is quite
short, and the rate of change may be neglected. In this
proximation of fast rotational relaxation the mean rate
rotation is expressed in terms of the local fluid vorticityV
5 1

2 ¹3v by

v5V1
1

4z
M3H. ~2.14!

Substituting in Eq.~2.8! we obtain

]M

]t
1¹•~vM !2V3M5gH~H2H l !2

1

4z
M3~M3H!.

~2.15!

We recall that the fieldH(r ,t) must be calculated self
consistently from the magnetization everywhere in space
Maxwell’s equations of magnetostatics.

We have shown in Ref.@3# that for a ferrofluid of shear
viscosity h and bulk viscosityzv at constant temperatureT
the local rate of entropy production is given by

Ts5h(
ab

S ]avb1]bva2
2

3
¹•vdabD 2

1zv~¹•v!2

14z~v2V!21gH~H2H l !
2. ~2.16!

It will be of interest to calculate the entropy production f
typical flow situations.

III. FORCE DENSITY AND STRESS

The fluid equation of motion is postulated as

r
dv

dt
5¹•shyd1Fm , ~3.1!

whereshyd is the hydrodynamic stress tensor andFm is the
magnetic force density. The hydrodynamic stress tenso
given by

shydab52pdab1h@]avb1]bva2 2
3 ~¹•v!dab#

1zv~¹•v!dab1z«abg~¹3v22v!g , ~3.2!

wherep is the pressure. The magnetic force density is
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3850 PRE 62B. U. FELDERHOF
Fm5~¹B!•M . ~3.3!

From Maxwell’s equations of magnetostatics

¹•B50, ¹3H50, ~3.4!

one derives

Fm5¹•sm ~3.5!

with the magnetic stress tensor

sm5
1

4p
BH1S B2

8p
2M•BD1. ~3.6!

With these definitions we adhere closely to the derivat
including the full set of Maxwell equations of Ref.@3#.

We note that the equation¹3H50 can be used to re
write the force density as

Fm5Fm8 12p¹M2. ~3.7!

with the Kelvin force density

Fm8 5M•~¹H!. ~3.8!

This can be written as

Fm8 5¹•sm8 ~3.9!

with the modified magnetic stress tensor

sm8 5
1

4p
BH1

1

8p
H21. ~3.10!

The equation of motion Eq.~3.1! can be written withFm8
instead ofFm provided the term 2pM2 in Eq. ~3.7! is ab-
sorbed in the pressurep. This is the form used by Shliomi
@1# and Rosensweig@2#. The equation of state for the pre
sure is not relevant in the flow situations considered belo

Using Eq.~3.5! we can rewrite the fluid equation of mo
tion Eq. ~3.1! in the form

r
dv

dt
5¹•~shyd1sm!. ~3.11!

This shows that the acceleration of a fluid element is due
the sum of hydrodynamic and magnetic stress.

In the approximation of fast rotational relaxation the a
tisymmetric part of the total stress tensor vanishes, as
lows from Eqs.~2.14!, ~3.2!, and ~3.6!. Hence in this ap-
proximation the equation of motion simplifies to

r
dv

dt
5¹•~shyd

S 1sm
S !. ~3.12!

Only the symmetric part of the total stress tensor is relev
for the translational motion of the fluid. For certain flo
situations the contribution from the magnetic stress ten
can be interpreted as resulting from an additional viscos

Below we consider several steady state flow situati
with small deviations from thermal equilibrium. We write

B5Beq1b, H5Heq1h, M5Meq1m, ~3.13!
n

.

to

-
l-

nt

or
.
s

and calculate to first order in the small quantitiesb, h, m,
andv. The entropy production of Eq.~2.16! is calculated to
second order. In all situations considered the relaxation eq
tion Eq. ~2.15! becomes to first order

V3Meq52gHFh2mC~Meq!2h•
MeqMeq

Meq
C8~Meq!G

1
1

4z
@Meq3~m3Heq!1Meq3~Meq3h!#.

~3.14!

It turns out that in all casesh•Meq50, so that the term with
C8(Meq) vanishes.

IV. PLANAR COUETTE FLOW

We consider a ferrofluid between two parallel plates az
56L in the presence of a uniform applied fieldB0 . In equi-
librium the fluid is at rest and uniformly magnetized wi
equilibrium magnetizationMeq. The fluid is sheared by
moving the plates with opposite velocity in thex direction.
The flow velocityv satisfies stick boundary conditions at th
plates.

We shall consider two flow situations in which the ma
netic field and magnetization are uniform. The shear flow
v5(Uz/L,0,0), whereU is the velocity of the upper plate
HenceV5Vey with V5U/2L. The xz component of the
change in the total stress tensor is

d@shyd
S 1sm

S #xz5hS ]vx

]z
1

]vz

]x D1
1

8p
d~BxHz!. ~4.1!

We can omit the termd(BzHx) because of the magneti
boundary conditions at the plates and the uniformity of
fields. Explicitly to first order

d@shyd
S 1sm

S #xz52Vh1 1
2 ~mxHeqz2mzBeqx!. ~4.2!

The change of viscosity is therefore

Dh5
mxHeqz2mzBeqx

4 V
. ~4.3!

Consider first the simplest situation, where the appl
field B0 is in the x direction. ThenHeqx5B0 , since H0
5B0 outside the plates. The equilibrium magnetization is
the x direction with Meqx5B0A(B0), and Beqx5B0(1
14pA(B0)). In the imposed shear flow one finds from th
boundary conditions atz5L that the uniform perturbed
fieldsb andh satisfybz50 andhx5hy50. From Eq.~3.14!
one findsmx5my50 and

mz52
4zV

Beq

Meq
2

4zgH1Meq
2 . ~4.4!

The change of viscosity is therefore

Dh i5z
PH

11PH
~4.5!

with the dimensionless ratio
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PH5Meq
2 /~4zgH!. ~4.6!

Next we consider the situation where the applied field
perpendicular to thex direction. ThenHeqy5B0y and Beqz
5B0z , so that the equilibrium magnetization is directed
the yz plane with componentsMeqy , Meqz , which must be
found from the coupled equations

Meqy5
B0y

C~Meq!
,

Meqz5
B0z

4p1C~Meq!
. ~4.7!

Hence one calculatesHeqz5MeqzC(Meq) and the angleu
defined by

Heq5Heq@cosuey1sinuez#. ~4.8!

In the imposed shear flow one finds from the boundary c
ditions at z5L that the uniform perturbed fieldsb and h
satisfybz50 andhx5hy50. From Eq.~3.14! one findsmy
5mz50 and

mx54zV
Meqsinu

4zgHC~Meq!1MeqHeq
. ~4.9!

The change of viscosity is therefore

Dh'5z
PH

11PH
sin2 u ~4.10!

with coefficient PH given by Eq. ~4.6!. If the rate gH is
related to the coefficientgM by Eq. ~2.10!, and the equation
of state Eq.~2.2! is used, then the expressions Eqs.~4.5! and
~4.10! reduce to those derived by Shliomis@4#. Our deriva-
tion is somewhat more general, and it is evident that dem
netization effects are properly accounted for.

V. POISEUILLE FLOW

The dependence of viscosity of a ferrofluid on magne
field was first investigated by McTague@8# by use of a cap-
illarimeter. In the absence of the magnetic field the viscos
follows from the Poiseuille flow pattern for given pressu
gradient. The dependence on magnetic field, found
McTague, has been explained by use of the expression
planar Coulette flow@2# @4#. For magnetic field parallel to the
tube the change of viscosity was calculated from Eq.~4.5!.
For magnetic field perpendicular to the tube it was calcula
from Eq. ~4.10! with angular averagêsin2 u&51

2. We show
below that the same expressions can be derived from a c
plete discussion of the actual flow situation in cylindric
geometry.

In the absence of a pressure gradient the flow velo
vanishes and the magnetic field and magnetization are
form. We calculate the flow velocity and the perturbed ma
netization to first order in the applied pressure gradient
turns out that for magnetic field both parallel and perp
dicular to the tube the flow pattern retains the Poiseu
form. The viscosity follows from the proportionality to th
pressure gradient.
s
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Consider first the situation with applied magnetic fie
parallel to the tube of radiusR. We choose thez axis along
the axis of the tube. In equilibrium the magnetic fieldHeq
5Heqez and the magnetizationMeq5Meqez are uniform. We
assume that an applied pressure gradient causes a flow
tern which in cylindrical coordinates (r,w,z) takes the form

v~r !5 f ~r!ez , p~r !52kz ~5.1!

with the property f (R)50. The magnetic inductionB
5B0ez remains uniform, but the magnetic fieldH and the
magnetizationM acquire radial components. Using th
boundary condition onBr at r5R we conclude thathr

524pmr for all r. From Eqs.~3.14! and ~5.1! we find

mr5Qi

d f

dr
~5.2!

with coefficient

Qi5
2z

Beq

PH

11PH
. ~5.3!

The symmetric part of the first order magnetic stress tenso

sm1
S 5

1

8p
@hBeq1Beqh#, ~5.4!

sinceb50 andm•Beq50. Thez component of the stationar
equation of motion

h¹2v1¹•sm1
S 2¹p50 ~5.5!

can now be expressed as

S h1
1

2
QiBeqD F d2f

dr2 1
1

r

d f

drG5k. ~5.6!

Hence we deduce thatf (r) has the Poiseuille formf (r)
5A(r22R2) with prefactorA5 1

4 k/(h1Dh i) correspond-
ing to the viscosity changeDh i5

1
2 QiBeq. From Eq.~5.3!

Dh i5z
PH

11PH
, ~5.7!

as in Eq.~4.5!.
Next we consider applied magnetic fieldB05B0ex in the

x direction. The equilibrium magnetic fieldHeq and the mag-
netizationMeq are then also in thex direction. If a pressure
gradient is imposed we again obtain a flow pattern of
form Eq. ~5.1!. In this case the magnetic fieldH5B0ex re-
mains unchanged, but the magnetic induction and the m
netization acquire axial componentsbz and mz , related by
bz54pmz . From Eqs.~3.14! and ~5.1! we find

mz5Q' cosw
d f

dr
~5.8!

with coefficient

Q'5
2z

Heq

PH

11PH
. ~5.9!
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The symmetric part of the first order magnetic stress tenso

sm1
S 5

1

8p
@bHeq1Heqb#, ~5.10!

since b•Beq50 and b•Meq50. The function f (r) in Eq.
~5.1! has again the Poiseuille formf (r)5A(r22R2) with
prefactorA5 1

4 k/(h1Dh'). The z component of the sta
tionary equation of motion Eq.~5.5! yields

Dh'5
1

2
z

PH

11PH
, ~5.11!

which agrees with Eq.~4.10! if there the factor sin2 u is re-
placed by its angular average1

2. This shows that the metho
used earlier@2,4#, based on such a replacement, yielded
correct result.

VI. ENTROPY PRODUCTION

It is of interest to calculate the entropy production f
each of the flow situations considered above. The calcula
shows that the viscosity increaseDh due to the presence o
the applied magnetic field can be found alternatively fro
the additional entropy production. For each of the four si
ations the dimensionless parameterPH , defined in Eq.~4.6!,
is just the ratio of the last two terms in Eq.~2.16!. Thus
definingsR as the entropy production due to rotational fri
tion, andsM as the entropy production due to magnetic
laxation, we have

sR

sM
5PH . ~6.1!

Consider first the planar Couette flow with applied ma
netic field parallel to the plates. In this situation the torq
M3H is to first ordermzBeqey . The differenceH2H l is to
first order

H2H l'h2mC~Meq!, ~6.2!

sincem•Meq50. As shown in Sec. IV bothh andm are in
the z direction and hz524pmz , so that H2H l'
2mBeq/Meq. The additional entropy productionDs is given
by the sum of the last two terms in Eq.~2.16!. Using the
expression Eq.~4.4! for mz one findsTDs54V2Dh i , with
Dh i given by Eq.~4.5!.

For the planar Couette flow with applied field perpendic
lar to the plates the torqueM3H is to first ordermxHeq

@2sinu ey1cosu ez#. The differenceH2H l to first order is
again given by Eq.~6.2!, but now h50 andm is in the x
direction. Using the expression Eq.~4.9! for mx one finds
TDs54V2Dh' with Dh' given by Eq.~4.10!.

For the Poiseuille flow with applied field in the directio
of flow the torqueH2H l is to first order2mrBeqer . The
differenceH2H l is to first order2mBeq/Meq with m in the
radial direction. For the local additional entropy producti
one finds

TDs5S d f

dr D 2

Dh i ~6.3!
is

e

n

-

-

-
e

-

with Dh i given by Eq.~5.7!. Comparing this with the loca
entropy production for the Poiseuille flow without magne
field one sees thatDh i can be identified with the additiona
viscosity.

For the Poiseuille flow with applied field perpendicular
the tube the torqueM3H is to first ordermzHeqey . The
differenceH2H l is to first order2mHeq/Beq with m in the
axial direction. For the local additional entropy productio
one finds

TDs52 cos2 wS d f

dr D 2

Dh' ~6.4!

with Dh' given by Eq.~5.10!. Integrating over the azimutha
direction one sees thatDh' can be identified with the addi
tional viscosity.

VII. FRICTION AND RELAXATION

In the expression Eq.~2.16! for the entropy production
rotational friction and magnetic relaxation appear as in
pendent dissipative processes, each characterized by its
transport coefficient. For a dilute ferrofluid in which Ne´el
relaxation can be neglected and for vanishing magnetic fi
the two transport processes are intimately related. Then
relaxation is due to orientational Brownian motion of ind
vidual particles in zero field, and the relaxation rate is giv
by gM52DR with rotational diffusion coefficientf R given
by the Einstein relationDR5kBT/ f R . For particles of radius
a the rotational friction coefficient isf R58pha3. In a dilute
ferrofluid the vortex viscosity isz5 1

4 n fR , so that the prod-
uct of transport coefficients is simplyzgM5 1

2 nkBT.
In dense ferrofluids the transport coefficientsz andgM or

gH should be regarded as independent quantities. For a
rofluid disturbed slightly from equilibrium the value of th
transport coefficients in the equilibrium situation is releva
Due to the effect of the magnetic field on the microstructu
the coefficients will depend on the fieldHeq. The micro-
scopic calculation of the transport coefficients is difficu
since it involves the many-body hydrodynamic interactio
the anisotropic magnetic interaction, and the anisotropic
crostructure of the suspension.

We have argued that the relation Eq.~2.10! provides the
correspondence between Shliomis’ relaxation equation
~2.4!, with M0 replaced byM l(H), and our relaxation equa
tion ~2.8!. Since for the calculation of viscosity the transpo
coefficients are needed only in equilibrium we put

gM~Heq!5gH~Heq!C~Meq!5gH~Heq!/A~Heq!. ~7.1!

Shliomis’ expressions@4# for the magnetoviscosityDh in
planar Couette flow take the same form as Eqs.~4.5! and
~4.10!, except that the coefficientPH is replaced by

P5MeqHeq/~4zgM !. ~7.2!

With the relation Eq.~7.1! our expressions for the magneto
viscosity are therefore identical to those of Shliomis@4#, ex-
cept that we allow a more general equation of state and fi
dependent transport coefficients.

We have remarked following Eq.~2.12! that the form of
our relaxation equation suggests that the coefficientgH does
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not depend strongly on the field. For large field the ra
A(Heq)5Meq/Heq behaves asA(Heq)'Ms /Heq. If gH is
taken to be a constant, then according to Eq.~7.1! the rate
coefficient gM(Heq) must behave asgM(Heq)'gHHeq/Ms
for large field. This agrees with the behavior found by Ma
senyuk, Raikher, and Shliomis@7# for dilute ferrofluids.

Therefore it is of interest to consider the dependence
magnetic field of the viscosity under the assumption that
transport coefficientsz andgH do not depend on the field. In
the analysis of experimental data@2,5# it has been assume
that the coefficientsz andgM do not depend on the field an
can be varied independently. Shliomis’ relaxation equat
leads to the expression

Dh iS5z
Ms

2jL~j!

12x0zgM1Ms
2jL~j!

, j5
3x0H

Ms
~7.3!

if the equation of state Eq.~2.2! is adopted. If the relation
6zgM5Ms

2/x0 is used, then this reduces to the express
derived originally by Shliomis@4#. Our relaxation equation
leads to

Dh iF5z
Ms

2L2~j!

4zgH1Ms
2L2~j!

~7.4!

if the same equation of state is used. In Eqs.~7.3! and ~7.4!
the coefficientsgM and gH will be regarded as constant
The two expressions agree for smallj, independent of the
value ofz, providedgM andgH are related bygH5gMx0 .
The second expression tends to

Dh iF~`!5z
Ms

2

4zgH1Ms
2 ~7.5!

for largej. In Fig. 1 we plotDh iS /z andDh iF /Dh iF(`) as
functions ofj for Ms520 G, x050.1, z50.001 P, andgM
5105 Hz, assuminggH5gMx0 . The curves nearly coincide
but note thatDh iF(`)/z50.909 for this choice of param
eters. This suggests that the dependence of viscosity on m
netic field can yield information on the relaxation behavio

The difference between the two relaxation equations
der the assumption of constantgM and constantgH , respec-

FIG. 1. Plot of magnetoviscosityDh i /Dh` in parallel field as a
function of j53x0H/Ms as calculated from Shliomis’ relaxatio
equation Eq.~2.4! ~dashed curve withDh`5z), and as calculated
from our relaxation equation Eq.~2.8! @solid curve with Dh`

5Dh iF(`)# for parameter values quoted in Sec. VII.
-
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tively, also becomes manifest if we consider relaxation fro
an equilibrium state after an applied field is switched off. W
consider a spherical sample of radiusR in vacuum, magne-
tized up to t50 by an applied fieldH05H0ez . At time t
50 the applied field is suddenly switched off. By spheric
symmetry the magnetization remains uniform across
sample, but its amplitude diminishes. The fluid remains
rest, so that the vorticityV vanishes, and the magnetizatio
M is always parallel to the magnetic fieldH. Hence from Eq.
~2.14! the mean particle rotationv vanishes, and Eqs.~2.4!
and ~2.8! simplify accordingly.

In Fig. 2 we plot the decay of magnetization according
Eq. ~2.4! with constantgM and according to Eq.~2.8! with
constantgH for the equation of state Eq.~2.2!, the same
parameter values as before, and for an initial applied fi
H0510 kG. Note that both decays are nonexponential.
long times both decays become exponential with the sa
rate (114px0/3)gM . The plots show a distinct difference i
relaxation behavior. One can define a mean relaxation t
tM from the integral of the reduced magnetizatio
M (t)/M (0) over time. By numerical integration one find
for relaxation according to Eq.~2.4! the value gMtM
50.709, whereasgMtM50.545 according to Eq.~2.8!. Both
values are to be compared with 3/(314px0)50.705. The
difference in relaxation behavior suggests that the cho
geometry may be suitable for a study of nonlinear magn
relaxation in experiment or computer simulation.

VIII. DISCUSSION

We have studied the dynamics of ferrofluids using tw
different equations for the relaxation of magnetization. T
first equation was postulated many years ago by Shlio
@4#, and has been used extensively in the literature@1# @2#.
The equation was justified for dilute ferrofluids on the ba
of Brownian motion theory@7#. Recently we derived an al
ternative relaxation equation on the basis of irreversible th
modynamics in combination with the full set of Maxwe
equations@3#. In the preceding we discussed the depende
of magnetoviscosity on magnetic field for typical flow sit
ations on the basis of the two relaxation equations. It tu
out that the two equations lead to identical results for
magnetoviscosity, provided the relaxation rates are

FIG. 2. Plot of magnetizationM (t) ~in G! after a magnetic field
of 10 kG is suddenly turned off, as a function of reduced timet
5gMt, as calculated from Shliomis’ relaxation equation Eq.~2.4!
~dashed curve!, and as calculated from our relaxation equation E
~2.8! ~solid curve! for parameter values quoted in Sec. VII.
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lated in a particular fashion, determined by the equilibriu
equation of state.

It is plausible that the relaxation rate in the equation
rived from irreversible thermodynamics depends o
weakly on the field. We have contrasted the implications
magnetoviscosity of the assumption of constant rate in b
relaxation equations. The two equations lead to a differ
field dependence of the magnetoviscosity. This may be
relevance for the interpretation of experiments.

The analysis suggests that the nature of magnetic re
ation in ferrofluids should be carefully studied. Data on ma
netoviscosity should be analyzed in combination with
equilibrium equation of state. Also it would be useful
study directly the time dependence of nonlinear relaxation
magnetization after the applied magnetic field is sudde
turned off.
.
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Finally we note that the theory developed above can
transposed to electrostatics by a replacement of the induc
B, magnetic fieldH, and magnetizationM , by the corre-
sponding electric displacementD, electric fieldE, and polar-
izationP. Shliomis’ relaxation equation was postulated ind
pendently in electrostatics by Hubbard and Onsager@9# in
the weak field limit and in the approximation of fast rot
tional relaxation. The relaxation equation was extended
yond the latter approximation by Hubbard and Kayser@10#.
These authors also postulated a corresponding expressio
the entropy production. The relation to the theory of ma
netic ferrofluids was discussed by Hubbard and Stiles@11#.
Our derivation from irreversible thermodynamics@3# in-
cludes electrostatics and leads to a relaxation equation an
gous to Eq.~2.8!. The analysis developed above for ferro
luids applies equally to electrostatics.
.
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